Closing today: HW_6A, 6B,6C Closing Wed: HW_7A, 7B, 7C Midterm 2 is next Thursday, May $19^{\text {th }}$ Covers: 6.4, 6.5, 7.1-7.5, 7.7, 7.8, 8.1

Summary of 7.7: Two approx. methods Here is what you do for $\mathrm{n}=4$ subdivisions:

Entry Task:

Approximate the following using $\mathrm{n}=4$ subdivisions and the Trapezoid and Simpson's Rules

$$
\int_{-1}^{1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x
$$

1. Compute $\Delta x=\frac{b-a}{4}$.
2. Label the tick marks: $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{a}+\boldsymbol{i} \Delta \boldsymbol{x}$
3. Trapezoid rule:
$\frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)++2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$
4. Simpson's rule:
$\frac{1}{3} \Delta x\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)++2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$

7.8 Improper Integrals

Motivation:

Consider the function $f(x)=\frac{1}{x^{3}}$.
Let's compute the following areas under this function.

1. $x=1$ to $x=2$:
2. $x=1$ to $x=10$:
3. $x=1$ to $x=100$:
4. $x=1$ to $x=1000$:
5. $x=1$ to $x=t$:

Limits Refresher

1. If stuck, plug in several values "near" t.
2. Know your basic values (and basic functions)

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} \frac{1}{t^{a}}=0, & \text { if } a>0 \\
\lim _{t \rightarrow \infty} \frac{1}{e^{a t}}=0, & \text { if } a>0 \\
\lim _{t \rightarrow \infty} t^{a}=\infty, & \text { if } a>0 \\
\lim _{t \rightarrow \infty} \ln (t)=\infty \\
\lim _{t \rightarrow 0^{+}} \ln (t)=-\infty
\end{array}
$$

3. If you have an indeterminant form, you must use algebra and/or L'Hopital's rule Example:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{\ln (t)}{t}= \\
& \lim _{t \rightarrow \infty} t^{2} e^{-3 t}=
\end{aligned}
$$

A few general notes on comparison: Suppose you have two functions $f(x)$ and $g(x)$ such that $0 \leq g(x) \leq f(x)$ for all values of x.
(a) If $\int_{1}^{\infty} f(x) d x$ converges, then $\int_{1}^{\infty} g(x) d x$ converges.
(b) If $\int_{1}^{\infty} g(x) d x$ diverges, then $\int_{1}^{\infty} f(x) d x$ diverges.

You can verify that

$$
\begin{aligned}
& \int_{1_{\infty}^{\infty}}^{\infty} \frac{1}{x^{p}} d x, \quad \text { converges for } p>1 \\
& \int_{1}^{\infty} e^{p x} d x, \quad \text { converges for } p<0
\end{aligned}
$$

